Решение головоломки: Эксцентричный учитель.

Возраст первой девочки составлял 638 дней, а мальчику было вдвое больше, то есть 1276 дней. На следующий день самой юной девочке было 639 дней, а ее вновь пришедшей в класс сестре — 1915 дней, что в сумме оставляет 2554 дня и ровно вдвое превышает возраст мальчика, равный 1277 дням. На следующий день маль чик, которому было уже 1278 дней, привел своего стар шего брата в возрасте 3834 дней, так что их суммарный возраст составил 5112 дней; а это вдвое больше возраста девочек, равного уже 640 + 1916 = 2556 дням.

На другой день возраст каждой девочки увеличился на 1, что в сумме дает 2558 дней, а вместе со старшей сестрой, которой было 7670 дней, их суммарный возраст составил 10228 дней, что ровно вдвое больше возраста мальчиков, достигшего в этот день 5114 дней.

Таким образом, мы подошли к 7670 дням. Юная леди достигла 21-летнего возраста; 21 х 365 = 7665 плюс 4 дня, добавленные на високосные годы, да еще один день, который явился ее 21-м днем рождения.

Читатели, которые полагали, что возраст мальчика равнялся З 1/2 годам, проглядели то обстоятельство, что возраст учеников увеличивался с каждым днем.

Задача